2 00 8 Unitary finite - Euclidean graphs are integral

نویسنده

  • Si Li
چکیده

We consider unitary graphs attached to d n , for odd integer n, using an analogue of the Euclidean distance. These graphs are shown to be integral.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Cayley Graphs Generated by Distance Sets in Vector Spaces over Finite Fields

Si Li and the fourth listed author (2008) considered unitary graphs attached to the vector spaces over finite rings using an analogue of the Euclidean distance. These graphs are shown to be integral when the cardinality of the ring is odd or the dimension is even. In this paper, we show that the statement also holds for the remaining case: the cardinality of the ring is even and the dimension i...

متن کامل

ON THE REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF RINGS

Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $...

متن کامل

2 8 M ay 2 00 8 UNITARY BRAID REPRESENTATIONS WITH FINITE IMAGE

We characterize unitary representations of braid groups Bn of degree linear in n and finite images of such representations of degree exponential in n.

متن کامل

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

متن کامل

Finite Euclidean graphs over ℤ2r are non-Ramanujan

Graphs are attached to 2r where 2r is the ring with 2 r elements using an analogue of Euclidean distance. M.R. DeDeo (2003) showed that these graphs are non-Ramanujan for r 4. In this paper, we will show that finite Euclidean graphs attached to 2r are non Ramanujan for r 2 except for r = 2 and d = 2, 3. Together with the results in Medrano et al. (1998), this implies that finite Euclidean graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008